Abstract

This article reports a numerical study of natural convection heat transfer in a differentially heated enclosure filled with a Al2O3–water nanofluid. Fluent v6.3 is used to simulate nanofluid flow. Simulations have been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Ra = 106, 107, and the volumetric fraction of alumina nanoparticles, ϕ = 0 − 4%. The effect of Brownian motion on the heat transfer is considered and examined. The numerical results show a decrease in heat transfer with an increase in particle volume fraction. Similar to experimental results, the Nusselt number increases with the Rayleigh number in the numerical results. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21121

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.