Abstract

It is proved that if a rational mapping has $\infty$ as a fixed point in its Fatou set, then its Julia set has positive capacity and the equilibrium measure is invariant. If $\infty$ is attracting or superattracting, then the equilibrium measure is strongly mixing, whereas if $\infty$ is neutral, then the equilibrium measure is ergodic and has entropy zero. Lower bounds for the entropy are given in the attracting and superattracting cases. If the Julia set is totally disconnected, then the equilibrium measure is Gibbs and therefore Bernoulli. The proofs use an induced action by the rational mapping on the space of Brownian paths started at $\infty$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.