Abstract

We report spontaneous symmetry breaking (SSB) phenomena in symmetrically charged binary particle systems under planar nanoconfinement with negative dielectric constants. The SSB is triggered solely via the dielectric confinement effect, without any external fields. The mechanism of SSB is found to be caused by the strong polarization field enhanced by nanoconfinement, giving rise to charge/field oscillations in the transverse directions. Interestingly, dielectric contrast can even determine the degree of SSB in transverse and longitudinal dimensions, forming charge-separated interfacial liquids and clusters on square lattices. Furthermore, we analytically show that the formed lattice constant is determined by the dielectric mismatch and the length scale of confinement, which is validated via molecular dynamics simulations. The novel broken symmetry mechanism may provide new insights into the study of quasi-2D systems and the design of future nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.