Abstract

Topological photonic insulators have attracted significant attention for their robust transport of light, impervious to scattering and disorder. This feature is ideally suited for slow light applications, which are typically limited by disorder-induced attenuation. However, no practical approach to broadband topologically protected slow light has been demonstrated yet. In this work, we achieve slow light in topologically unidirectional waveguides based on periodically loading an edge termination with suitably tailored resonances. The resulting edge state dispersion can wind around the Brillouin zone multiple times sustaining broadband, topologically robust slow light, opening exciting opportunities in various photonic scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.