Abstract

The time-domain nodal discontinuous Galerkin (TD-DG) method is emerging as a potential wave-based method for three-dimensional (3D) room acoustics modeling, where high-order accuracy, geometrical flexibility and accurate modeling of boundary conditions are of critical importance. In this work, an accurate and efficient formulation of broadband time-domain impedance boundary conditions of locally-reacting surfaces is proposed in the framework of the TD-DG method. The formulation of the time-domain boundary condition is based on the plane-wave reflection coefficient at normal incidence and its approximation in the frequency domain using a sum of rational fractions, which can be obtained from analytical models or measured impedance values. To verify the performance of the formulation, a single reflection scenario is considered and the reflection coefficient obtained from the numerical tests is compared with the analytical one based on a locally reacting surface impedance. Also, the effects of the coefficients of rational functions on the accuracy are investigated. The broadband time-domain impedance boundary formulation accurately predicts both the amplitude and the phase of the reflection behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.