Abstract
We propose an all-dielectric single-layer guided-mode resonance filter (GMRF) operating in the high-frequency terahertz (THz) region. For the fabrication of thin gratings to achieve strong resonance in the high-frequency region, the refractive index and absorption must be small, while the tensile strength must be high. Cyclic olefin copolymer (COC) films have a lower refractive index and absorption than polyethylene terephthalate (PET) films and a higher tensile yield strength than polytetrafluoroethylene (PTFE) films. Therefore, the COC film was found suitable to fabricate a GMRF operating in the high-frequency THz region. We fabricated COC-based single-layer GMRFs with a thickness of 50 µm and grating periods of 500, 400, 300, 200, and 100 µm; the resonance frequencies of the TE0,1 mode were 0.576, 0.712, 0.939, 1.329, and 2.759 THz, respectively. A shorter grating period caused a greater shift of the resonance to a higher frequency. In particular, the COC film enabled the fabrication of a 100-µm grating period with a ridge width of 32 µm and length of 2 mm, enabling the GMRF to operate up to 2.759 THz, which is very high frequency compared to the previous highest frequency of 0.7 THz. These results were in good agreement with a simulation using rigorous coupled-wave analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.