Abstract

Two evolutions of fully aperiodic large-pitch fiber designs employing few stress-applying parts are presented. The induced elasto-optic stress discriminates the two orthogonal polarization modes (LP01x and LP01y) of the fundamental mode, selectively delocalizing one of them into the cladding via a suitable coupling to one or several cladding modes. This ensures the propagation of a single linear polarization mode. For the largest core dimensions, however, the applied stress can strongly influence the intensity distributions of core modes, and a tailored design process must thwart this. The polarization properties are investigated experimentally with core scalability over a large spectral bandwidth into passive structures, leading to the evidencing of a single-mode single polarization over a large span from 1 to 1.6 μm with a core dimension of 80 μm and, notably, at 1400 nm for a core dimension of 140 μm. The polarization extinction ratio is also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.