Abstract

AbstractNi2+‐doped glass–ceramics containing Zn(GaxAlx−1)2O4 crystals were successfully synthetized using both parent glass crystallization (Technique 1) and a direct doping method also called “frozen sorbet” (Technique 2) to get a ZnGa2O4 crystal/glass composite. The frozen sorbet technique allows the survival of ∼10 nm crystalline particles. Both materials are further crystallized near their respective temperature of crystallization to get glass–ceramics with the stabilization of Zn(GaxAlx−1)2O4 crystals. Although these two materials exhibit the same glass transition temperature, a shift in the crystallization temperature is observed. The glass–ceramics are transparent in the near infrared range, and the Ni2+ doping provides a broadband emission centered around 1300 nm with a full width at half‐maximum (FWHM) equal to 228 nm. The structure, microstructure, and thermal and optical properties of these materials are discussed in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.