Abstract

To allow a high quality factor (Q-factor) to a sub-wavelength dielectric resonator, quasi-bound states in the continuum (Q-BICs) have gained much interest. However, the Q-BIC resonance condition is too sensitive to the geometry of the resonator, and its practical broadband generation on a single-wafer platform has been limited. Here we present that, employing the base angle as a structural degree of freedom, the truncated nano-cone resonator supports the Q-BIC resonance with a high Q-factor of >150 over a wide wavelength range of >100 nm. We expect our approach will boost the utilization of the Q-BIC resonance for various applications requiring broadband spectral tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.