Abstract

We develop a coherent hyperspectral near-field microscope using a combined nano-Fourier Transform Infra-Red (FTIR) spectroscope and a scattering Scanning Near-field Optical Microscope (s-SNOM) illuminated by an ultra-broadband few-cycle femtosecond source, spanning a spectrum from 660 to 1050 nm. Using this spatio-spectral approach, we resolve hyperspectral near-field response of a single plasmonic nano-antennas over 450 nm bandwidth with a spatial resolution of 40 nm and a spectral resolution of 50 cm-1. In particular, we identify the electric near-field spatial distribution of the dipole resonant mode of various nano-antennas and observe, in accordance with previous theoretical reports, that those are spectrally red-shifted from their far-field response. Moreover, we are able to spectrally and spatially differentiate the near-field distribution of the dipole and quadrupole modes at the single nanoparticle level. Being coherent and short-pulsed, our technique opens the path for optical ultrafast characterization and control of light-matter interaction at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.