Abstract

Bacterial cellulose-based antifouling materials have been produced by incorporation of silver nanoparticles for broad-spectrum antimicrobial activity. Three variations of silver nitrate (AgNO3) to reducing agent concentrations have been tried to vary the silver nanoparticle dimension. The formation of silver nanoparticles was also evidenced by the X-ray diffraction, and the crystallite size was found to decrease with increase in NaBH4 concentration. AgBC composites having < 2% (W/W) of silver exhibited 99.9% antimicrobial activity which was sustained up to 72 h against spoiled food derived mixed microbial culture. On the other hand, only 90% activity was observed with colloidal AgNPs due to aggregate formation. Composites displayed superior antimicrobial activity than colloid with equivalent amount of silver. Food stuff was protected from microbial spoilage for 30 days when stored in AgBC nanocomposites, whereas spoilage was noticed within 15 days for food stuff stored in regular polythene bag. Therefore, the AgBC composite having < 2% silver can be used as a lining of regular food packaging material to extend shelf life till 30 days. Toxicity due to high amount of silver can be prevented with these composites and can be safely used in healthcare applications such as food packaging, wound dressing, hospital bed lining and surgical apparels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.