Abstract

BackgroundMany plants have been used in traditional medicine for their antibacterial, antifungal, antiprotozoal, antiviral, antidiarrhoeal, analgesic, antimalarial, antioxidant, anti-inflammatory and anticancer activities.In order to find novel antimicrobial and antiviral agents, the aim of the present study was the evaluation of the antibacterial and antibiofilm susceptibility of Asphodelus microcarpus leaves extract. Moreover, the antiviral activity and the phytochemical composition of the active extract were also determined.MethodsAntimicrobial and antibiofilm activities of leaves ethanol extract of A. microcarpus were evaluated on 13 different microbial strains. We selected three different sets of microorganisms: (i) Gram-positive bacteria, (ii) Gram-negative bacteria and (iii) yeasts. The potential antiviral activity of A. microcarpus leaves ethanol extract was evaluated with a luciferase reporter gene assay in which the dsRNA-dependent RIG-I-mediated IFN-β activation was inducted or inhibited by the Ebola virus VP35 protein. HPLC-DAD-MS was used to identify phenolic profile of the active extract.ResultsA. microcarpus leaves extract showed a potent inhibitory activity on Gram-positive bacteria while only a reduced inhibition was observed on Gram-negative bacteria. No activity was detected against Yeasts. The extract also showed an interesting antibiofilm motif on various bacterial strains (E. coli, S. aureus, S. haemolyticus and B. clausii). Moreover, this extract significantly affected the Ebola virus VP35 inhibition of the viral RNA (vRNA) induced IFN response.ConclusionsThe overall results provide supportive data on the use of A. microcarpus as antimicrobial agent and a potential source of anti-viral natural products.Data collected set the bases for further studies for the identification of single active components and the development of new pharmaceuticals.

Highlights

  • Many plants have been used in traditional medicine for their antibacterial, antifungal, antiprotozoal, antiviral, antidiarrhoeal, analgesic, antimalarial, antioxidant, anti-inflammatory and anticancer activities

  • Antimicrobial susceptibility testing and citotoxicity of A. microcarpus extract When tested on 13 different microorganisms, Asphodelus extract (AE) showed an inhibitory effect on Gram-positive bacteria while lower inhibition was observed on the Gram-negative bacteria E. coli (Table 1)

  • When tested for antibiofilm activity, AE showed an interesting effect on various bacterial strains (E. coli, S. aureus, S. haemolyticus and B. clausii)

Read more

Summary

Introduction

Many plants have been used in traditional medicine for their antibacterial, antifungal, antiprotozoal, antiviral, antidiarrhoeal, analgesic, antimalarial, antioxidant, anti-inflammatory and anticancer activities. Highly pathogenic viruses such as Ebola virus (EBOV), developed a number of strategies for counteracting innate immune system responses [22, 23]. The EBOV VP35 protein is essential for viral inhibition of IFN production and, it has been shown to be an effective viral target [23, 24]. Within this context, one approach to subvert this powerful immune response inhibition is to identify small molecules that potentiate or activate the IFN signaling pathway, increasing IFN production in response to viral infections to a level able to overturn this inhibition

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.