Abstract

We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 μm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10K. For a specific family, we show a constant emission intensity at saturation from 10K to temperatures well above the 77K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.