Abstract
Owing to brittleness and hardness, functional glass is one of the most difficult to cut materials. This paper proposes a new machining method—brittle–ductile mode machining combining both properties of brittle breakage and plastic flow of glass. Edge-indention experiments are first conducted in order to deduce the laws of crack initiation and propagation in the process of glass cutting, then a single-straight tool with big inclination angle is designed for glass cutting based on the laws of crack initiation and propagation and properties of plastic flow. With this new tool, the lateral and subsurface cracks initiation can be suppressed, and media cracks propagate away from machined surface. At the same time, the requirements for machining glass in ductile manner can be fulfilled. Validation experiments show that highly efficient and precise glass cutting can be achieved at the cutting depth of sub-millimeter level, and an integral and crack-free surface with good finish can be obtained. This method overcomes the process restriction on critical cutting depth and tool feed for ductile regime turning technology and can be transferred to mass production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.