Abstract

AbstractBy designing a plasmonic waveguide–slit structure (a nanoslit etched in a silver nanowire) on a silver substrate, an ultrahigh Purcell factor and ultralarge figure of merit (FOM) are numerically predicted. Because of the large field enhancement (>150 times the incident field) and the ultrasmall optical volume (V ≈ 2 × 10−5λ3) of the resonant mode in the metallic nanoslit, the simulations show that the Purcell factor in the system can reach up to FP = 1.68 × 105, which is more than ten times the maximum Purcell factor in previous work (by placing metallic nanoparticles on a metal surface with a nanogap). Because of the utilization of a silver substrate rather than the common dielectric substrate, the mode cutoff of the surface plasmon polariton (SPP) waveguide mode is completely eliminated, which provides a large selection range of the nanowire radii to support the resonant mode in the nanoslit. Moreover, the SPP propagation length is significantly increased by more than 30 times. As a result, an ultralarge FOM of 1.40 × 107 is obtained, which is more than 80 times the maximum FOM in previous work where the metallic nanowire is placed on or surrounded by dielectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.