Abstract
We study the formation and dynamics of bright solitons in a quasi-one-dimensional reduced mean-field Gross–Pitaevskii equation of a dipolar Bose–Einstein condensate with repulsive short-range interactions. The study is carried out using a variational approximation and a numerical solution. Plots of chemical potential and root mean square (rms) size of solitons are obtained for the quasi-one-dimensional model of three different dipolar condensates of 52Cr, 168Er and 164Dy atoms. The results achieved are in good agreement with those produced by the full three-dimensional mean-field model of the condensate. We also study the dynamics of the collision of a train of two solitons in the quasi-one-dimensional model of every condensate above. At small velocities (zero or close to zero) the dynamics is attractive for a phase difference δ = 0, the solitons coalesce and these oscillate, forming a bound soliton molecule. For a phase difference δ = π the effect is repulsive. At large velocities the collision is independent of the initial phase difference δ. This is quasi-elastic and the result is two quasi-solitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.