Abstract

Reducing the execution time of ORB-SLAM algorithm is a crucial aspect of autonomous vehicles since it is computationally intensive for embedded boards. We propose a parallel GPU-based implementation, able to run on embedded boards, of the Tracking part of the ORB-SLAM2/3 algorithm. Our implementation is not simply a GPU port of the tracking phase. Instead, we propose a novel method to accelerate image Pyramid construction on GPUs. Comparison against state-of-the-art CPU and GPU implementations, considering both computational time and trajectory errors shows improvement on execution time in well-known datasets, such as KITTI and EuRoC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.