Abstract

One of the major challenges facing current media management systems and related applications is the so-called “semantic gap” between the rich meaning that a user desires and the shallowness of the content descriptions that are automatically extracted from the media. In this paper, we address the problem of bridging this gap in the sports domain. We propose a general framework for indexing and summarizing sports broadcast programs, with a high-level model of sports broadcast video using the concept of an event, defined according to domain-specific knowledge for different types of sports. Within this general framework, we develop automatic event detection algorithms that are based on automatic analysis of the visual and aural signals in the media. We have successfully applied the event detection algorithms to different types of sports including American football, baseball, Japanese sumo wrestling, and soccer. Event modeling and detection contribute to the reduction of the semantic gap by providing rudimentary semantic information obtained through media analysis. We further propose a novel approach, which makes use of independently generated rich textual metadata, to fill the gap completely through synchronization of the information-laden textual data with the basic event segments. We implemented an MPEG-7 compliant browsing system for semantic retrieval and summarization of sports video using the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.