Abstract

To bridge the gap between single and isolated pore systems to multipore systems, such as membranes and electrodes, we studied an array of nanochannels with varying interchannel spacing that controlled the degree of channel communication. Instead of treating them as individual channels connected in parallel or an assembly like a homogeneous membrane, this study resolves the pore-pore interaction. We found that increased channel isolation leads to current intensification, whereas at high voltages electroconvective effects control the degree of communication via suppression of the diffusion layer growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.