Abstract

AbstractEnriched diploid pollen was applied for in vitro pollinations and crossbreeding in the greenhouse to produce high performance triploid aspen and aspen hybrids for cultivation in medium rotation plantations. In addition to crossings within the section Populus, intersectional crossbreeding was performed to combine benefits of intersectional hybridization with those derived from triploidisation.Both the enrichment of diploid pollen by size fractionation of naturally unreduced pollen and heat treatment of microspore mother cells resulted in a distinct increase of diploid pollen. Using this pollen, six triploid plants were obtained from in vitro pollinations and twenty from crossbreeding in the greenhouse. The triploid plants displayed a high variability in growth performance. Two clones from in vitro pollination and five from crossbreeding in the greenhouse were chosen to estimate growth characteristics. A first assessment of clone performance in an outdoor container test con - ducted over one growing season revealed two triploid clones with a same stem height and a significantly increased basal stem diameter in comparison to the fast-growing triploid reference clone “Astria”. Crossbreeding experiments also resulted in two fast-growing mixoploid clones, which have already been stable for several years.All in all, in this study, crossbreeding using enriched diploid pollen is proved to be a reliable and applicable approach for an effective breeding of triploid poplars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.