Abstract

Key messageThermotolerant crop research.Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

Highlights

  • Ambient temperatures are rising at a considerable rate as part of the current global climate change

  • We evaluate potential changes to crop management, the availability of genetic resources for breeding activities and the usefulness of research into the molecular and physiological basis of heat tolerance

  • It is very important that genetic variation for the trait can be identified and characterized efficiently in order to introduce it in a breeding program

Read more

Summary

Introduction

Ambient temperatures are rising at a considerable rate as part of the current global climate change. We evaluate potential changes to crop management, the availability of genetic resources for breeding activities and the usefulness of (academic) research into the molecular and physiological basis of heat tolerance.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.