Abstract
Respiration is a vital indicator of the state of the human body. Monitoring human respiration enables the realization of a variety of intelligent applications, including smart medical and sleep monitoring. Traditional methods that are dependent upon wearable devices are more costly and inconvenient for users. Recent studies have evidenced that low-cost commodity WiFi devices can be used to accomplish contactless respiration monitoring. In this article, we present BreatheBand, a fine-grained and robust respiration monitoring system based on commercial WiFi signals. We first remove the time-varying phase shift in the channel state information (CSI) by developing the Multi-antenna CSI–Subpopulation Genetic algorithm. Then we separate human respiratory components from WiFi signals by employing subcarrier selection and Independent Component Analysis. Next, applying a Mixed Cluster Gaussian–Hidden Markov Model, we generate a respiration signal resembling that of wearable devices. Finally, we integrate the BreatheBand system into commercial WiFi infrastructure. The results show that the BreatheBand’s respiration signal is remarkably identical to the signal collected by the wearable device in various scenarios. In particular, the mean absolute error of the BreatheBand’s respiration rate is approximately 0.1 bpm, outperforming state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.