Abstract

We present a breast lesion classification methodology, based on four-dimensional (4-D) dynamic contrast-enhanced magnetic resonance images (DCE-MRI), using recurrent neural networks in combination with a pretrained convolutional neural network (CNN). The method enables to capture not only the two-dimensional image features but also the temporal enhancement patterns presented in DCE-MRI. We train a long short-term memory (LSTM) network on temporal sequences of feature vectors extracted from the dynamic MRI sequences. To capture the local changes in lesion enhancement, the feature vectors are obtained from various levels of a pretrained CNN. We compare the LSTM method's performance to that of a CNN fine-tuned on "RGB" MRIs, formed by precontrast, first, and second postcontrast MRIs. LSTM significantly outperformed the fine-tuned CNN, resulting in and , , in the task of distinguishing benign and malignant lesions. Our method captures clinically useful information carried by the full 4-D dynamic MRI sequence and outperforms the standard fine-tuning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.