Abstract

Aqueous solutions containing six model organic-N compounds (glycine, cysteine, asparagine, uracil, cytosine, and guanine) were subjected to chlorination at various chlorine (Cl) to precursor (P) molar ratios for 30 min. Chlorine residuals were determined by both DPD/FAS titration and the MIMS (Membrane Introduction Mass Spectrometry) method to evaluate breakpoint chlorination behavior, residual chlorine distributions, and byproducts. DPD/FAS titration was found to yield false-positive measurements of inorganic combined chlorine residuals in all cases. The breakpoint chlorination curve shape was strongly influenced by the structure of the model compound. Cyanogen chloride was found to be present as a byproduct in all cases, and the yield was strongly dependent on the Cl:P molar ratio and the structure of the compounds, with glycine being the most efficient CNCl precursor. Six byproducts other than cyanogen chloride were also identified. Free chlorine measurements by DPD/FAS titration and MIMS were in good ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.