Abstract
We consider some perturbations of Chebyshev polynomials of the second kind obtained by modifying by dilation one of its recurrence coefficients at an arbitrary order. By applying Brauer and Geršgorin theorems to Jacobi matrices associated with such perturbed sequences we obtain some locations of their zeros.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.