Abstract
The cause of idiopathic PD is obscure, and most cases are sporadic. Oxidative stress and deficiency of various neurotrophic factors (NTFs) could be factors triggering neurodegeneration in the substantia nigra (SN). Cytoplasmic hybrid cells (cybrids) made from mitochondrial DNA of idiopathic PD subjects have reduced glutathione (GSH) levels and increased vulnerability to H2O2. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) rescue PD cybrids from H2O2-induced cell death. GDNF mediated effects require Src kinase and phosphatidylinositol 3-kinase (PI3K)/Akt activation. Inhibiting either PI3K/Akt or ERK pathways blocks the effects of BDNF. Inhibiting p38MAPK and c-Jun N-terminal kinase (JNK) pathways enhances the neuroprotective effects of both NTFs. These results demonstrate that expression of PD mitochondrial genes in cybrids increases vulnerability to oxidative stress that is ameliorated by both BDNF and GDNF, which utilize distinct signaling cascades to increase intracellular GSH and enhance survival-promoting cell signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.