Abstract
Brain source activation is caused due to certain mental or physical task, and such activation is localized by using various optimization techniques. This localization has vital application for diagnoses of various brain disorders such as epilepsy, schizophrenia, Alzheimer, depression, Parkinson and stress. Various neuroimaging techniques (such as EEG, fMRI, MEG) are used to record brain activity for inference and estimation of active source locations. EEG employs set of sensors which are placed on scalp to measure electric potentials. These sensors have significant role in overall system complexity, computational time and system cost. Hence, sensor reduction for EEG source localization has been a topic of interest for researchers to develop a system with improved localization precision, less system complexity and reduced cost. This research work discusses and implements the brain source localization for real-time and synthetically generated EEG dataset with reduced number of sensors. For this, various optimization algorithms are used which include Bayesian framework-based multiple sparse priors (MSP), classical low-resolution brain electromagnetic tomography (LORETA), beamformer and minimum norm estimation (MNE). The results obtained are then compared in terms of negative variational free energy, localization error and computational time measured in seconds. It is observed that multiple sparse priors (MSP) with increased number of patches performed best even with reduced number of sensors, i.e., 7 instead of 74. The results are shown valid for synthetic EEG data at low SNR level, i.e., 5 dB and real-time EEG data, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.