Abstract

OBJECT.: Brain shift during minimally invasive, bur hole-based procedures such as deep brain stimulation (DBS) electrode implantation and stereotactic brain biopsy is not well characterized or understood. We examine shift in various regions of the brain during a novel paradigm of DBS electrode implantation using interventional imaging throughout the procedure with high-field interventional MRI. Serial MR images were obtained and analyzed using a 1.5-T magnet prior to, during, and after the placement of DBS electrodes via frontal bur holes in 44 procedures. Three-dimensional coordinates in MR space of unique superficial and deep brain structures were recorded, and the magnitude, direction, and rate of shift were calculated. Measurements were recorded to the nearest 0.1 mm. Shift ranged from 0.0 to 10.1 mm throughout all structures in the brain. The greatest shift was seen in the frontal lobe, followed by the temporal and occipital lobes. Shift was also observed in deep structures such as the anterior and posterior commissures and basal ganglia; shift in the pallidum and subthalamic region ipsilateral to the bur hole averaged 0.6 mm, with 9% of patients having over 2 mm of shift in deep brain structures. Small amounts of shift were observed during all procedures; however, the initial degree of shift and its direction were unpredictable. Brain shift is continual and unpredictable and can render traditional stereotactic targeting based on preoperative imaging inaccurate even in deep brain structures such as those used for DBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.