Abstract

We studied the role of free radicals on brain oxidative damage in rats after acute immobilization stress (restraint) and mild emotional stress (handling). To investigate brain oxidative damage, CuZn and Mn dependent superoxide dismutase (CuZn SOD, Mn SOD) activities, lipid peroxidation (TBARs), Na + K + ATPase activity, protein carbonyl (PrC), and reduced and oxidized glutathione (GSH, GSSG) levels were measured in the cerebral cortex (CTX), hippocampus (HIP), and striatum (ST) of the animals after the two different stress stimuli. Because stress produces abnormalities in the hypothalamic-pituitary-adrenal axis, the intensity of the two stress conditions were measured by plasmatic corticosteroid (COR) levels: particularly, COR levels doubled in handled rats and increased 15-fold in restrained animals. The SOD activities increased in CTX and decreased in HIP of the handled rats, while in ST a significant decrease in handled animals but an increase in restrained animals occurred. TBARs, GSH, and GSSG levels remained unchanged, while an index of glutathione redox decreased significantly in ST of handled animals and in CTX of restrained ones. Na + K + ATPase activity increased significantly in the HIP and ST of both groups of stressed rats. The stress induced a remarkable increase in PrC levels in all studied cerebral areas. These findings provide evidence to support the idea that stress produces oxidants but that the oxidative damage in stress differs in cerebral areas and could contribute to the degenerative mechanism of aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.