Abstract

It takes at least 3 months to restore hand and arm function to 70% of its original value. This condition certainly reduces the quality of life for stroke survivors. The effectiveness in restoring the motor function of stroke survivors can be improved through rehabilitation. Currently, rehabilitation methods for post-stroke patients focus on repetitive movements of the affected hand, but it is often stalled due to the lack of professional rehabilitation personnel. This research aims to design a brain-computer interface (BCI)-based exoskeleton hand motion control for rehabilitation devices. The Bidirectional long short-term memory (Bi-LSTM) method performs motion classification for the ESP32 microcontroller to control the movement of the DC motor on the exoskeleton hand in real-time. The statistical features, such as mean and standard deviation from the sliding windows process of electroencephalograph (EEG) signals, are used as the input for Bi-LSTM. The highest accuracy at the validation stage was obtained in the combination of mean and standard deviation features, with the highest accuracy of 91% at the offline testing stage and reaching an average of 90% in real-time (80%-100%). Overall, the control system design that has been made runs well to perform movements on the hand exoskeleton based on the classification of opening and grasping movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.