Abstract

There is increasing evidence that indicates benzo[a]pyrene (B[a]P) and its active metabolite benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE) are endocrine disruptors that can cause reproductive toxicity. Nevertheless, the underlying mechanisms are still obscure. The present study investigates the impacts of B[a]P and BPDE on mitochondria, a sensitive target affected by multiple chemicals, in spermatogenic cells. It showed that BPDE treatment induced mitochondrial dysfunction and the inhibition of mitochondrial biogenesis in mouse spermatocyte-derived cells (GC-2). These effects were efficiently mitigated by pretreatment with ZLN005, an activator of PGC-1α, in GC-2 cells. TERT knockdown and re-expression cell models were established to demonstrate that TERT regulated the BPDE-induced mitochondrial damage via PGC-1α signaling in GC-2 cells. Moreover, upregulating or knockdown SIRT1 expression attenuated or aggravated BPDE-induced mitochondrial compromise by activating or inhibiting, respectively, the TERT and PGC-1α molecules in GC-2 cells. Finally, we observed that BPDE markedly elevated oxidative stress in GC-2 cells. Resveratrol and N-acetylcysteine, as reactive oxygen species (ROS) scavengers, attenuated BPDE-mediated mitochondrial damage by increasing SIRT1 activity and expression in GC-2 cells. The in vitro results were corroborated by in vivo experiments in rats treated with B[a]P for 4 weeks. B[a]P administration caused mitochondrial damage and mitochondria-dependent apoptosis in spermatogenic cells, as well as the decreased expression of SIRT1, TERT, and PGC-1α. In summary, the results of the present study demonstrate that B[a]P and BPDE induce mitochondrial damage through ROS production that suppresses SIRT1/TERT/PGC-1a signaling and mediate B[a]P- and BPDE-mediated reproductive toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.