Abstract

Chitosan (CS) nanoparticles have several distinct intrinsic advantages; however, their in vivo colloidal stability in biological fluids was not fully explored especially when carrying proteins. The present study aimed to investigate their colloidal stability using an ex vivo physiological model of fetal bovine serum (FBS) and human serum (HS). The stability of bovine‐serum‐albumin (BSA‐) loaded nanoparticles was relatively higher in FBS than that in HS. Particle size of unloaded and BSA‐loaded nanoparticles was statistically unchanged up to 24 h after incubation in FBS. However in HS, a significant increase in particle size from 144 ± 17 to 711 ± 22 nm was observed for unloaded nanoparticles and by 2.5‐fold for BSA‐loaded nanoparticle, at 24 h after incubation in HS. Zeta potential of both nanoparticles was less affected by the components in FBS compared to those in HS. A remarkable swelling extent was experienced for unloaded and BSA‐loaded nanoparticles in HS, up to 54 ± 4% and 44 ± 5%, respectively. Morphology of unloaded and BSA‐loaded nanoparticles was varied from smooth spherical and rod shape to irregular shape when incubated in FBS; however, form agglomerates when incubated in HS. These findings therefore suggest that HS is more reactive to cause colloidal instability to the chitosan nanoparticles compared to FBS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.