Bovine milk exosomes influence transcriptome profiles and reduce cardiac fibrosis in a rat model
Cardiac fibrosis, marked by excessive extracellular matrix deposition, leads to heart failure. This study examines the effects of bovine milk exosomes on cardiac fibrosis in an isoproterenol-induced rat model. Rats were orally administered bovine milk exosomes, and transcriptome sequencing of the left ventricle was conducted. We identified 116 differentially expressed mRNAs (DEMs) and 141 differentially expressed lncRNAs (DELs). Key DEMs (Ciart, Cd151, Per2, Per3, H3f3c, Dbp, Tnc) and DELs (XR_001841620.1, TCONS_00025336, TCONS_00002367, TCONS_00027989, TCONS_00029872, TCONS_00036358) were significantly upregulated, as confirmed by RT-qPCR. Gene Ontology and KEGG analysis showed enrichment in circadian rhythms and immune activities. Co-expression and competing endogenous RNA networks illustrated potential regulatory mechanisms. These findings elucidate the therapeutic effects of bovine milk exosomes on cardiac fibrosis, highlighting potential targets for future clinical research.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-19160-x.
41
- 10.1016/j.jnutbio.2018.10.017
- Nov 3, 2018
- The Journal of Nutritional Biochemistry
2
- 10.1080/10408398.2024.2338831
- Apr 3, 2024
- Critical reviews in food science and nutrition
4
- 10.1080/13543784.2024.2326024
- Mar 8, 2024
- Expert Opinion on Investigational Drugs
396
- 10.1161/circresaha.119.311148
- Jun 20, 2019
- Circulation Research
9
- 10.1007/s11427-023-2452-2
- Feb 28, 2024
- Science China. Life sciences
2
- 10.1016/j.ijbiomac.2024.139247
- Mar 1, 2025
- International journal of biological macromolecules
187
- 10.1161/circresaha.121.318005
- May 27, 2021
- Circulation Research
9
- 10.1080/10641963.2024.2326022
- Mar 20, 2024
- Clinical and Experimental Hypertension
24
- 10.1007/s12265-021-10174-0
- Oct 1, 2021
- Journal of Cardiovascular Translational Research
162229
- 10.1006/meth.2001.1262
- Dec 1, 2001
- Methods
- Research Article
- 10.3892/mmr.2020.11470
- Aug 28, 2020
- Molecular medicine reports
Non-coding RNAs (ncRNAs) have been previously reported to serve an important role in transcription. In addition, several studies have revealed that long ncRNAs (lncRNAs) have a crucial role in human diseases. However, the association between lncRNAs and inflammation-induced intestinal macrophages in the intestinal mucosal barrier has remained elusive. In the present study, intestinal macrophages from healthy Sprague Dawley rats were divided into two groups: The experimental group, consisting of intestinal macrophages treated with 1 mg/l lipopolysaccharide (LPS) and the control group, composed of untreated cells. Differentially expressed (DE) lncRNAs and mRNAs between the control and experimental groups were identified using microarray profiling. The levels of DE mRNAs and lncRNAs were measured by reverse transcription-quantitative PCR (RT-qPCR). Furthermore, Gene Ontology (GO) and pathway enrichment analyses of DE mRNAs and lncRNAs were performed. To identify core regulatory factors among DE lncRNAs and mRNAs, a lncRNA-mRNA network was constructed. A total of 357 DE lncRNAs and 542 DE mRNAs between the LPS-treated and untreated groups were identified (fold-change >1.5; P<0.05). In addition, selected microarray data were confirmed by RT-qPCR. GO analysis of the DE mRNAs indicated that the biological functions of the upregulated mRNAs included inflammatory response, immune response, metabolic process and signal transduction, whereas those of the downregulated mRNAs were metabolic process, cell cycle, apoptosis and inflammatory response. In addition, pathway enrichment analysis of the upregulated mRNAs revealed that the most enriched pathways were the NF-κB signaling pathway, B-cell receptor signaling pathway and apoptosis, while the downregulated mRNAs were significantly involved in metabolic pathways, the phosphatidylinositol signaling system, cytokine-cytokine receptor interaction and the Toll-like receptor signaling pathway. The lncRNA-mRNA co-expression network suggested that lncRNAs NONMMUT024673 and NONMMUT062258 may have an important role in LPS-induced intestinal macrophages. The present study identified the DE profiles between LPS- and non-LPS-treated intestinal macrophages. These DE lncRNAs and mRNAs may be used as potential targets for attenuating excessive inflammatory response in intestinal mucosal barrier dysfunction.
- Research Article
4
- 10.21037/tcr-22-842
- Nov 1, 2022
- Translational Cancer Research
Actinic keratosis (AK) is a common premalignant lesion induced by chronic exposure to ultraviolet radiation and may develop into invasive cutaneous squamous carcinoma (cSCC). The identification of specific biomarkers in AK are still unclear. Long non-coding RNAs (lncRNAs), as transcripts of more than 200 nucleotides, significantly involving in multiple biologic processes, especially in the development of tumors. In our study, we obtained data from RNA-sequencing analysis using two AK lesion tissues and three normal cutaneous tissues to comparatively analyze the differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs). Firstly, we used microarray analyses to identify DE lncRNAs and DE mRNAs. Secondly, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to analyze the primary function and find out significant pathways of these DE mRNA and lncRNAs. Finally, we used the top ten DE lncRNAs to construct a lncRNA-mRNA co-expression network. Our results showed that there were a total of 2,097 DE lncRNAs and 2,043 DE mRNAs identified. GO and KEGG analysis and the lncRNA-mRNA co-expression network (using the top 10 DE lncRNAs comprises 130 specific co-expressed mRNAs to construct) indicated that lncRNA uc011fnr.2 may negatively regulate SCIMP and Toll-like receptor 4 (TLR4) and play an important role in Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway of AK. lncRNA uc011fnr.2 may play an important role in JAK-STAT3 signaling pathway of AK by modulating SCIMP, TLR4 and IL-6. Further research is required to validate the value of lncRNA uc011fnr.2 in the progression of AK.
- Addendum
1
- 10.18632/aging.104222
- Dec 22, 2020
- Aging (Albany NY)
Correction for: Long non-coding RNA RNF7 promotes the cardiac fibrosis in rat model via miR-543/THBS1 axis and TGFβ1 activation
- Research Article
- 10.1111/jop.13416
- Mar 8, 2023
- Journal of Oral Pathology & Medicine
Venous malformation (VM) is a kind of congenital vascular anomaly with a high incidence of recurrence, detailed pathogenesis and standard treatment of VM still lack now. Increasing evidence showed exosomal RNA plays a pivotal role in various diseases. However, the underlying mechanism of VM based on the potential differentially exosomal RNAs remains unclear. Comparative high-throughput sequencing with serum exosomes from three VM patients and three healthy donors was used to explore differentially expressed (DE) circRNAs, DE lncRNAs, and DE mRNAs involving the formation of VM. We identified and verified DE circRNAs, DE lncRNAs, and DE mRNAs via qRT-PCR assay. We explored the potential functions of these exosomal DE non-coding RNAs via performing further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Besides, circRNA/lncRNA-miRNA-mRNA linkages were also constructed to find their potential relationships in VM. A total of 121 circRNAs, 53 lncRNAs, and 42 mRNAs (|log2 FC| ≥ 2.0, FDR <0.05, n=3) were determined to be differentially expressed. QRT-PCR validated that these top-changed DE circRNAs, lncRNAs, and mRNAs had significant expression changes. Functional studies demonstrated that DE circRNAs play a pivotal role in thyroid hormone signaling pathway, DE lncRNAs function as a key regulator in MAPK signaling pathway and DE miRNAs participate in the process of hepatocellular carcinoma mostly. Our study comprehensively depicted exosomal DE non-coding RNAs networks related to the pathogenesis of VM which can provide new insight into, a novel target for treating VM.
- Research Article
7
- 10.1111/jcmm.15778
- Aug 29, 2020
- Journal of Cellular and Molecular Medicine
Lung adenocarcinoma (LUAD) is a highly malignant cancer. Although competing endogenous RNA (ceRNA)‐based profiling has been investigated in patients with LUAD, it has not been specifically used to study metastasis in LUAD. We found 130 differentially expressed (DE) lncRNAs, 32 DE miRNAs and 981 DE mRNAs from patients with LUAD in The Cancer Genome Atlas (TCGA) database. We analysed the functions and pathways of 981 DE mRNAs using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Based on the target DE mRNAs and DE lncRNAs of DE miRNAs, we established an lncRNA‐miRNA‐mRNA ceRNA network, comprising 37 DE lncRNAs, 22 DE miRNAs and 212 DE mRNAs. Subsequently, we constructed a protein‐protein interaction network of DE mRNAs in the ceRNA network. Among all, DE RNAs, 5 DE lncRNAs, 5 DE miRNAs and 45 DE mRNAs were confirmed found to be associated with clinical prognosis. Moreover, 3 DE lncRNAs, 4 DE miRNAs and 9 DE mRNAs in the ceRNA network were associated with clinical prognosis. We further screened 3 DE lncRNAs, 3 DE miRNAs and 3 DE mRNAs using clinical samples. These DE lncRNAs, DE miRNAs and DE mRNAs in ceRNA network may serve as independent biomarkers of LUAD metastasis.
- Research Article
- 10.3760/cma.j.cn121430-20210205-00211
- Apr 1, 2021
- Zhonghua wei zhong bing ji jiu yi xue
To analyze the sepsis related long non-coding RNA (lncRNA) and mRNA expression profiles based on Gene Expression Omnibus (GEO) datasets and bioinformatic analysis, and to analyze the sepsis-associated competing endogenous RNA (ceRNA) network based on microRNA (miRNA) database. The sepsis-related lncRNA dataset was downloaded from the GEO database, and the differential expression analysis was conducted by Bioconductor on the sepsis dataset to obtain differentially expressed lncRNA (DElncRNA) and differentially expressed mRNA (DEmRNA), and cluster heat map was drawn. miRNA combined with DElncRNA were predicted by miRcode. mRNA targeted by miRNA was simultaneously met by three databases: TargetScan, miRDB, and mirTarBase. The interaction relationship of lncRNA-miRNA-mRNA was obtained. The regulatory network visualization software CytoScape was used to draw ceRNA networks. DEmRNA in the ceRNA networks were imported into the Search Tool for the Retrieval of Interacting Genes Database (STRING) online database to draw the protein-protein interaction (PPI) map. The gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEmRNA were performed. Dataset GSE89376 and GSE145227 were found from GEO database. Difference analysis showed there were 14 DElncRNA and 359 DEmRNA in the elderly group of GSE89376; 8 DElncRNA and 153 DEmRNA in the adult group of GSE89376; 1 232 DElncRNA and 1 224 DEmRNA in the children group of GSE145227. Clustering heatmap showed that there were significant differences in the expression of lncRNA and mRNA between the sepsis group and the control group. The ceRNA networks were constructed with miRNA. Several DElncRNA and multiple DEmRNA participated in the ceRNA network of sepsis. The PPI diagram demonstrated that several genes encoding proteins interacted with each other and form a multi-node interaction network with multiple genes encoding proteins. Functional annotation and enrichment analysis demonstrated that there might be a crosstalk mechanism on functionally related genes such as nuclear receptor activity, ligand-activated transcription factor activity, and steroid hormone receptor activity, and played a role in the occurrence and development of diseases through forkhead box transcription factor O (FoxO) signaling pathway, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, p53 signaling pathway, and phosphateidylinositol 3-kinase (PI3K)/Akt signaling pathway. Through sepsis-related lncRNA-miRNA-mRNA ceRNA network and combining with KEGG pathway analysis, there were several lncRNA and mRNA participating in the ceRNA network related sepsis, which played an important role in several signal pathways.
- Research Article
2
- 10.3389/fvets.2022.998796
- Sep 1, 2022
- Frontiers in Veterinary Science
BackgroundCharacterization the long non-coding RNAs (lncRNAs) and their regulated mRNAs involved in lipid metabolism during liver growth and development is of great value for discovering new genomic biomarkers and therapeutic targets for fatty liver and metabolic syndrome.Materials and methodsLiver samples from sixteen rabbit models during the four growth stages (birth, weaning, sexual maturity, and somatic maturity) were used for RNA-seq and subsequent bioinformatics analyses. Differentially expressed (DE) lncRNAs and mRNAs were screened, and the cis/trans-regulation target mRNAs of DE lncRNAs were predicted. Then the function enrichment analyses of target mRNAs were performed through Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. The target protein interaction (PPI) and lncRNA-mRNA co-expression networks were constructed using string version 11.0 platform and R Stats. Finally, six lncRNAs and six mRNAs were verified taking RT-qPCR.ResultsLiver Oil Red O detection found that the liver showed time-dependent accumulation of lipid droplets. 41,095 lncRNAs, 30,744 mRNAs, and amount to 3,384 DE lncRNAs and 2980 DE mRNAs were identified from 16 cDNA sequencing libraries during the growth of liver. 689 out of all DE lncRNAs corresponded to 440 DE mRNAs by cis-regulation and all DE mRNAs could be regulated by DE lncRNAs by trans-regulation. GO enrichment analysis showed significant enrichment of 892 GO terms, such as protein binding, cytosol, extracellular exsome, nucleoplasm, and oxidation-reduction process. Besides, 52 KEGG pathways were significantly enriched, including 11 pathways of lipid metabolism were found, like Arachidonic acid metabolism, PPAR signaling pathway and Biosynthesis of unsaturated fatty acids. After the low expression DE mRNAs and lncRNAs were excluded, we further obtained the 54 mRNAs were regulated by 249 lncRNAs. 351 interaction pairs were produced among 38 mRNAs and 215 lncRNAs through the co-expression analysis. The PPI network analysis found that 10 mRNAs such as 3β-Hydroxysteroid-Δ24 Reductase (DHCR24), lathosterol 5-desaturase (SC5D), and acetyl-CoA synthetase 2 (ACSS2) were highly interconnected hub protein-coding genes. Except for MSTRG.43041.1, the expression levels of the 11 genes by RT-qPCR were the similar trends to the RNA-seq results.ConclusionThe study revealed lncRNA-mRNA interation networks that regulate lipid metabolism during liver growth, providing potential research targets for the prophylaxis and treatment of related diseases caused by liver lipid metabolism disorders.
- Research Article
3
- 10.1016/j.micpath.2021.104963
- May 20, 2021
- Microbial Pathogenesis
Gene expression profile and long noncoding RNA analysis in Candida albicans insoluble β-glucan-stimulated CD14+ monocytes and THP-1 cells
- Research Article
18
- 10.3389/fgene.2021.671729
- May 19, 2021
- Frontiers in Genetics
Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.
- Research Article
- 10.1007/s00213-025-06797-9
- Apr 24, 2025
- Psychopharmacology
Oxiracetam (ORC) has been demonstrated to improve neurological function resulting from traumatic brain injury (TBI). This study aims to explore the precise molecular mechanism of ORC in the treatment of TBI. TBI rat model was established and treated with ORC. Modified Garcia score, rotarod test and HE staining were employed to evaluate the neuroprotective effects of ORC. Subsequently, RNA-seq was conducted on the hippocampus of sham, TBI and ORC rats to identify differential expression (DE) lncRNAs and mRNAs. Functional analysis of DE lncRNAs and mRNAs was performed. The real-time quantitative polymerase chain reaction (qRT-PCR) was used to determine the expression of DE lncRNAs and DE mRNAs. Western blot was performed to explore important pathway in ceRNA networks. ORC has been demonstrated to effectively improve neurological function in TBI rats. A total of 10 ORC-treated DE lncRNAs and 61 DE mRNAs were obtained. A co-expression network comprising 79 lncRNA-mRNA pairs associated with the treatment of ORC was constructed. Furthermore, an lncRNA-miRNA-mRNA regulated ceRNA network was constructed, comprising 15 mRNAs, 41 miRNAs and 10 lncRNAs. Functional enrichment, qRT-PCR, and Western blot analysis showed that ORC improve neurological function of TBI rats by regulating multiple signaling pathways, including the JAK-STAT/PI3K-Akt pathway, as well as affecting the expression of key genes Prlr, Cdkn1a, and Cldn1. Our study reveals the mechanism of ORC therapy in TBI rats, which mainly relies on the regulation of the JAK-STAT/PI3K-Akt pathway and the influence on the expression of key genes Prlr, Cdkn1a, and Cldn1.
- Research Article
14
- 10.1186/s12967-021-02802-9
- Apr 1, 2021
- Journal of Translational Medicine
BackgroundLong noncoding RNAs (lncRNAs) can regulate gene expression in a cis-regulatory fashion or as “microRNA sponges”. However, the expression and functions of lncRNAs during early human immunodeficiency virus (HIV) infection (EHI) remain unclear.Methods3 HAART-naive EHI patients and 3 healthy controls (HCs) were recruited in this study to perform RNA sequencing and microRNA (miRNA) sequencing. The expression profiles of lncRNAs, mRNAs and miRNAs were obtained, and the potential roles of lncRNAs were analysed based on discovering lncRNA cis-regulatory target mRNAs and constructing lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on 175 lncRNA-associated differentially expressed (DE) mRNAs to investigate the potential functions of DE lncRNAs in ceRNA networks.ResultsA total of 242 lncRNAs, 1240 mRNAs and 21 mature known miRNAs were determined as differentially expressed genes in HAART-naive EHI patients compared to HCs. Among DE lncRNAs, 44 lncRNAs were predicted to overlap with 41 target mRNAs, and 107 lncRNAs might regulate their nearby DE mRNAs. Two DE lncRNAs might regulate their cis-regulatory target mRNAs BTLA and ZAP70, respectively, which were associated with immune activation. In addition, the ceRNA networks comprised 160 DE lncRNAs, 21 DE miRNAs and 175 DE mRNAs. Seventeen DE lncRNAs were predicted to regulate HIF1A and TCF7L2, which are involved in the process of HIV-1 replication. Twenty DE lncRNAs might share miRNA response elements (MREs) with FOS, FOSB and JUN, which are associated with both immune activation and HIV-1 replication.ConclusionsThis study revealed that lncRNAs might play a critical role in HIV-1 replication and immune activation during EHI. These novel findings are helpful for understanding of the pathogenesis of HIV infection and provide new insights into antiviral therapy.
- Research Article
16
- 10.5713/ab.21.0092
- Jun 24, 2021
- Animal Bioscience
ObjectiveIntramuscular fat (IMF) is a critical economic indicator of pork quality. Studies on IMF among different pig breeds have been performed via high-throughput sequencing, but comparisons within the same pig breed remain unreported.MethodsThis study was performed to explore the gene profile and identify candidate long noncoding RNA (lncRNAs) and mRNAs associated with IMF deposition among Laiwu pigs with different IMF contents. Based on the longissimus dorsi muscle IMF content, eight pigs from the same breed and management were selected and divided into two groups: a high IMF (>12%, H) and low IMF group (<5%, L). Whole-transcriptome sequencing was performed to explore the differentially expressed (DE) genes between these two groups.ResultsThe IMF content varied greatly among Laiwu pig individuals (2.17% to 13.93%). Seventeen DE lncRNAs (11 upregulated and 6 downregulated) and 180 mRNAs (112 upregulated and 68 downregulated) were found. Gene Ontology analysis indicated that the following biological processes played an important role in IMF deposition: fatty acid and lipid biosynthetic processes; the extracellular signal-regulated kinase cascade; and white fat cell differentiation. In addition, the peroxisome proliferator-activated receptor, phosphatidylinositol-3-kinase-protein kinase B, and mammalian target of rapamycin pathways were enriched in the pathway analysis. Intersection analysis of the target genes of DE lncRNAs and mRNAs revealed seven candidate genes associated with IMF accumulation. Five DE lncRNAs and 20 DE mRNAs based on the pig quantitative trait locus database were identified and shown to be related to fat deposition. The expression of five DE lncRNAs and mRNAs was verified by quantitative real time polymerase chain reaction (qRT-PCR). The results of qRT-PCR and RNA-sequencing were consistent.ConclusionThese results demonstrated that the different IMF contents among pig individuals may be due to the DE lncRNAs and mRNAs associated with lipid droplets and fat deposition.
- Research Article
6
- 10.5713/ab.22.0020
- Apr 30, 2022
- Animal Bioscience
ObjectiveThe growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG).MethodsA total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs.ResultsIn RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events.ConclusionThe results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.
- Research Article
4
- 10.1186/s12864-022-08641-2
- May 26, 2022
- BMC Genomics
BackgroundBerberine (BBR) is an isoquinoline alkaloid found in the Berberis species. It was found to have protected effects in cardiovascular diseases. Here, we investigated the effect the regulatory function of long noncoding RNAs (lncRNAs) during the treatment of stable coronary heart disease (CHD) using BBR. We performed microarray analyses to identify differentially expressed (DE) lncRNAs and mRNAs between whole blood samples from 5 patients with stable CHD taking BBR and 5 no BBR volunteers. DE lncRNAs and mRNAs were validated by quantitative real-time PCR.ResultsA total of 1703 DE lncRNAs and 912 DE mRNAs were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated DE mRNAs might be associated with mammalian target of rapamycin and mitogen-activated protein kinase pathway. These pathways may be involved in the healing process after CHD. To study the relationship between mRNAs encoding transcription factors (DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene) and CHD related de mRNAs, we performed protein and protein interaction analysis on their corresponding proteins. AKT and apoptosis pathway were significant enriched in protein and protein interaction network. BBR may affect downstream apoptosis pathways through DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene. Growth arrest-specific transcript 5 might regulate CHD-related mRNAs through competing endogenous RNA mechanism and may be the downstream target gene regulated by BBR. Verified by the quantitative real-time PCR, we identified 8 DE lncRNAs that may relate to CHD. We performed coding and non-coding co-expression and competing endogenous RNA mechanism analysis of these 8 DE lncRNAs and CHD-related DE mRNA, and predicted their subcellular localization and N6-methyladenosine modification sites.ConclusionOur research found that BBR may affect mammalian target of rapamycin, mitogen-activated protein kinase, apoptosis pathway and growth arrest-specific transcript 5 in the process of CHD. These pathways may be involved in the healing process after CHD. Our research might provide novel insights for functional research of BBR.
- Research Article
10
- 10.1093/jas/skad394
- Jan 3, 2023
- Journal of Animal Science
The process of muscle development and intramuscular fat (IMF) deposition is quite complex and controlled by both mRNAs and ncRNAs. Long-stranded non-coding RNAs (LncRNAs) are involved in various biological processes in mammals while also playing a critical role in muscle development and fat deposition. In the present study, RNA-Seq was used to comprehensively study the expression of lncRNAs and mRNAs during muscle development and intramuscular fat deposition in postnatal Tianzhu white yaks at three stages, including 6 mo of age (calve, n = 6), 30 mo of age (young cattle, n = 6) and 54 mo of age (adult cattle, n = 6). The results indicated that a total of 2,101 lncRNAs and 20,855 mRNAs were screened across the three stages, of which the numbers of differential expression (DE) lncRNAs and DE mRNAs were 289 and 1,339, respectively, and DE lncRNAs were divided into eight different expression patterns based on expression trends. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that some DE mRNAs overlapped with target genes of lncRNAs, such as NEDD4L, SCN3B, AGT, HDAC4, DES, MYH14, KLF15 (muscle development), ACACB, PCK2, LIPE, PIK3R1, PNPLA2, and MGLL (intramuscular fat deposition). These DE mRNAs were significantly enriched in critical muscle development and IMF deposition-related pathways and GO terms, such as AMPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway, etc. In addition, lncRNA-mRNA co-expression network analysis revealed that six lncRNAs (MSTRG.20152.2, MSTRG.20152.3, XR_001351700.1, MSTRG.8190.1, MSTRG.4827.1, and MSTRG.11486.1) may play a major role in Tianzhu white yak muscle development and lipidosis deposition. Therefore, this study enriches the database of yak lncRNAs and could help to further explore the functions and roles of lncRNAs in different stages of muscle development and intramuscular fat deposition in the Tianzhu white yak.
- New
- Research Article
- 10.1038/s41598-025-24936-2
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-05663-0
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-25573-5
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-25911-7
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-26478-z
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-26058-1
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-25891-8
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-26168-w
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-25690-1
- Nov 7, 2025
- Scientific reports
- New
- Research Article
- 10.1038/s41598-025-23455-4
- Nov 7, 2025
- Scientific reports
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.