Abstract

This study compares the effects of stored red cells, freshly donated blood and ultrapurified polymerized bovine haemoglobin (HBOC) on haemodynamic variables, oxygen transport capacity and muscular tissue oxygenation after acute and almost complete isovolaemic haemodilution in a canine model. Following randomization to one of three groups, 24 anaesthetized Foxhounds underwent isovolaemic haemodilution with 6% hetastarch to haematocrit levels of 20%, 15% and 10% before they received isovolaemic stepwise augmentation of 1 g.dl-1 haemoglobin. In Group 1, animals were given autologous stored red cells which they had donated three weeks before. In Group 2, animals received freshly donated blood harvested during haemodilution. In Group 3, animals were infused with HBOC. Skeletal muscle tissue oxygen tension was measured with a polarographic 12 mu needle probe. In all groups, heart rate and cardiac index were increased with decreasing vascular resistance during haemodilution (P < 0.05). Haemodynamic variables showed a reversed trend during transfusion when compared to haemodilution but remained below baseline (P < 0.05). Arterial and venous oxygen content were changed in parallel to changes of haematocrit and haemoglobin concentrations but were lower in Group 3 than in Groups 1 and 2 (P < 0.05) during transfusion. In contrast, the oxygen extraction ratio was higher in Group 3 (59 +/- 8%, P < 0.01) at the end of transfusion than in Group 1 (37 +/- 13%) and 2 (32 +/- 5%). In Group 3, mean tissue oxygen tension increased from 16 +/- 5 mmHg after haemodilution to 56 +/- 11 mmHg after transfusion (P < 0.01) and was higher than in Group 1 (41 +/- 9, P < 0.01) and Group 2 (29 +/- 11, P < 0.01). While in Group 3 an augmentation of 0.7 g.dl-1 haemoglobin resulted in restoring baseline tissue oxygenation, higher doses of 2.7 g.dl-1 and 2.1 g.dl-1 were needed in Groups 1 and 2 to reach this level (P < 0.01). The results show a higher oxygenation potential of HBOC than with autologous stored red cells because of a more pronounced oxygen extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.