Abstract

In a locally recoverable or repairable code, any symbol of a codeword can be recovered by reading only a small (constant) number of other symbols. The notion of local recoverability is important in the area of distributed storage where a most frequent error-event is a single storage node failure (erasure). A common objective is to repair the node by downloading data from as few other storage nodes as possible. In this paper, we bound the minimum distance of a code in terms of its length, size, and locality. Unlike the previous bounds, our bound follows from a significantly simple analysis and depends on the size of the alphabet being used. It turns out that the binary Simplex codes satisfy our bound with equality; hence, the Simplex codes are the first example of an optimal binary locally repairable code family. We also provide achievability results based on random coding and concatenated codes that are numerically verified to be close to our bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.