Abstract

Optical resonators provide a powerful tool for testing aspects of Lorentz invariance. Here, we present a reanalysis of an experiment where a path asymmetry was created in an optical ring resonator by introducing a dielectric prism in one arm. The frequency difference of the two fundamental counter-propagating modes was then recorded as the apparatus was orientation-modulated in the laboratory. By assuming that the minimal Standard-Model Extension coefficients vanish we are able to place bounds on higher-order parity-odd Lorentz-violating coefficients of the Standard-Model Extension. The results presented in this work set the first constraints on two previously unbounded linear combinations of d=8 parity-odd nonbirefringent nondispersive coefficients of the photon sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.