Abstract

We describe methods for proving upper and lower bounds on infinite-time averages in deterministic dynamical systems and on stationary expectations in stochastic systems. The dynamics and the quantities to be bounded are assumed to be polynomial functions of the state variables. The methods are computer-assisted, using sum-of-squares polynomials to formulate sufficient conditions that can be checked by semidefinite programming. In the deterministic case, we seek tight bounds that apply to particular local attractors. An obstacle to proving such bounds is that they do not hold globally; they are generally violated by trajectories starting outside the local basin of attraction. We describe two closely related ways past this obstacle: one that requires knowing a subset of the basin of attraction, and another that considers the zero-noise limit of the corresponding stochastic system. The bounding methods are illustrated using the van der Pol oscillator. We bound deterministic averages on the attracting limit cycle above and below to within 1%, which requires a lower bound that does not hold for the unstable fixed point at the origin. We obtain similarly tight upper and lower bounds on stochastic expectations for a range of noise amplitudes. Limitations of our methods for certain types of deterministic systems are discussed, along with prospects for improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.