Abstract
It is well-known that dyadic martingale transforms are a good model for Calderón–Zygmund singular integral operators. In this paper we extend some results on weighted norm inequalities to vector-valued functions. We prove that if W is an A2 matrix weight, then the weighted L2-norm of a Calderón–Zygmund operator with cancellation has the same dependence on the A2 characteristic of W as the weighted L2-norm of an appropriate matrix martingale transform. Thus the question of the dependence of the norm of matrix-weighted Calderón–Zygmund operators on the A2 characteristic of the weight is reduced to the case of dyadic martingales and paraproducts. We also show a slightly different proof for the special case of Calderón–Zygmund operators with even kernel, where only scalar martingale transforms are required. We conclude the paper by proving a version of the matrix-weighted Carleson Embedding Theorem.Our method uses a Bellman function technique introduced by S. Treil to obtain the right estimates for the norm of dyadic Haar shift operators. We then apply the representation theorem of T. Hytönen to extend the result to general Calderón–Zygmund operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.