Abstract

In sequential testing with binary data, sample size and time to detect a signal are the key performance measures to optimize. While the former should be optimized in Phase III clinical trials, minimizing the latter is of major importance in post-market drug and vaccine safety surveillance of adverse events. The precision of the relative risk estimator on termination of the analysis is a meaningful design criterion as well. This paper presents a linear programming framework to find the optimal alpha spending that minimizes expected time to signal, or expected sample size as needed. The solution enables (a) to bound the width of the confidence interval following the end of the analysis, (b) designs with outer signaling thresholds and inner non-signaling thresholds, and (c) sequential designs with variable Bernoulli probabilities. To illustrate, we use real data on the monitoring of adverse events following the H1N1 vaccination. The numerical results are obtained using the R Sequential package.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.