Abstract
AbstractWe introduce sign-preserving charges on the system of all orthogonally closed subspaces, F(S), of an inner product space S, and we show that it is always bounded on all the finite-dimensional subspaces whenever dim S = ∞. When S is finite-dimensional this is not true. This fact is used for a new completeness criterion showing that S is complete whenever F(S) admits at least one non-zero sign-preserving regular charge. In particular, every such charge is always completely additive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.