Abstract
By generalizing the formalism proposed by Dalibard, Dupont-Roc and Cohen Tannoudji, we study the resonance interatomic energy of two identical atoms coupled to quantum massless scalar fields in a symmetric /antisymmetric entangled state in the Minkowski and cosmic string spacetimes. We find that in both spacetimes, the resonance interatomic energy has nothing to do with the field fluctuations but is attributed to the radiation reaction of the atoms only. We then concretely calculate the resonance interatomic energy of two static atoms near a perfectly reflecting boundary in the Minkowski spacetime and near an infinite and straight cosmic string respectively. We show that the resonance interatomic energy in both cases can be enhanced or suppressed and even nullified as compared with that in an unbounded Minkowski spacetime, because of the presence of the boundary in the Minkowski spacetime or the nontrivial spacetime topological structure of the cosmic string. Besides, we also discover that the resonance interatomic energy in the cosmic string spacetime exhibits some peculiar properties, making it in principle possible to sense different cosmic string spacetimes via the resonance interatomic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.