Abstract
In [4], we developed a boundary treatment method for implicit-explicit (IMEX) Runge-Kutta (RK) methods for solving hyperbolic systems with source terms. Since IMEX RK methods include explicit ones as special cases, this boundary treatment method naturally applies to explicit methods as well. In this paper, we examine this boundary treatment method for the case of explicit RK schemes of arbitrary order applied to hyperbolic conservation laws. We show that the method not only preserves the accuracy of explicit RK schemes but also possesses good stability. This compares favorably to the inverse Lax-Wendroff method in [5,6] where analysis and numerical experiments have previously verified the presence of order reduction [5,6]. In addition, we demonstrate that our method performs well for strong-stability-preserving (SSP) RK schemes involving negative coefficients and downwind spatial discretizations. It is numerically shown that when boundary conditions are present and the proposed boundary treatment is used, that SSP RK schemes with negative coefficients still allow for larger time steps than schemes with all nonnegative coefficients. In this regard, our boundary treatment method is an effective supplement to SSP RK schemes with/without negative coefficients for initial-boundary value problems for hyperbolic conservation laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.