Abstract

The dissipatively perturbed Hamiltonian system corresponding to primary resonance is analyzed in the case in which two competing stable periodic responses exist. The method of averaging fails as the trajectory approaches the unperturbed homoclinic orbit (separatrix). By using the small dissipation of the Hamiltonian (the Melnikov integral) near the homoclinic orbit, the boundaries of the basin of attraction are determined analytically in an asymptotically accurate way. The selection of the two competing periodic responses is influenced by small changes in the initial conditions. The analytic formula is shown to agree well with numerical computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.