Abstract

An analysis is carried out to investigate the steady two-dimensional stagnation-point flow of a water based nanofluid over an exponentially stretching/shrinking sheet in its own plane. Using a similarity transformation, the governing mathematical equations are transformed into coupled, nonlinear ordinary differential equations which are then solved numerically for three types of nanoparticles, namely copper (Cu), alumina (Al2O3), and titania (TiO2) in the water based fluid with Prandtl number Pr=6.2. The skin friction coefficient, the local Nusselt number and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ and the stretching/shrinking parameter λ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique. The range of the parameter λ where the similarity solution exists for the steady stagnation-point flow over an exponentially stretching/shrinking sheet is larger compared with the linear stretching/shrinking case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.