Abstract

The problem of laminar fluid flow which results from the stretching of a flat surface in a nanofluid has been investigated numerically. This is the first paper on stretching sheet in nanofluids. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. The variation of the reduced Nusselt and reduced Sherwood numbers with Nb and Nt for various values of Pr and Le is presented in tabular and graphical forms. It was found that the reduced Nusselt number is a decreasing function of each dimensionless number, while the reduced Sherwood number is an increasing function of higher Pr and a decreasing function of lower Pr number for each Le, Nb and Nt numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.