Abstract
The solution of three-dimensional planar cracks under shear loading are investigated by the boundary integral equation method. A system of two hypersingular integral equations of a three-dimensional elastic solid with an embedded planar crack are given. The solution of the boundary integral equations is succeeded taking into consideration an appropriate Gauss quadrature rule for finite part integrals which is suitable for the numerical treatment of any plane crack without a polygonal contour shape and permit the fast convergence for the results. The stress intensity factors at the crack front are calculated in the case of a circular and an elliptic crack and are compared with the analytical solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.