Abstract

A general boundary element formulation for contact problems, capable of dealing with local elastoplastic effects and friction, is presented. Both conforming and non-conforming problems may be analysed. The contact problem is solved by means of a direct constraint technique, in which compatibility and equilibrium conditions are directly enforced in the general system of equations. The contact areas are modelled with linear interpolation functions, and quadratic interpolation functions are used everywhere else. Elastoplasticity is solved by a BEM initial strain approach The Von Mises yield criterion with its associated flow rule is adopted. Both perfectly plastic and work hardening materials are studied in the proposed formulation. An incremental loading technique is proposed, which allows accurate development of the loading history of the problem. The non-linear nature of these problems demands the use of an iterative procedure, to determine the correct frictional conditions at every node of the contact area and the value of the plastic strains at selected points where local yielding may have occurred. Several numerical examples are presented to demonstrate the efficiency of the proposed formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.