Abstract
We have studied the superfluid density and the specific heat of the XY model on lattices L x L x H with L >> H (i.e. on lattices representing a film geometry) using the Cluster Monte Carlo method. In the H-direction we applied staggered boundary conditions so that the order parameter on the top and bottom layers is zero, whereas periodic boundary conditions were applied in the L-directions. We find that the system exhibits a Kosterlitz-Thouless phase transition at the H-dependent temperature T_{c}^{2D} below the critical temperature T_{\lambda} of the bulk system. However, right at the critical temperature the ratio of the areal superfluid density to the critical temperature is H-dependent in the range of film thicknesses considered here. We do not find satisfactory finite-size scaling of the superfluid density with respect to H for the sizes of H studied. However, our numerical results can be collapsed onto a single curve by introducing an effective thickness H_{eff} = H + D (where D is a constant) into the corresponding scaling relations. We argue that the effective thickness depends on the type of boundary conditions. Scaling of the specific heat does not require an effective thickness (within error bars) and we find good agreement between the scaling function f_{1} calculated from our Monte Carlo results, f_{1} calculated by renormalization group methods, and the experimentally determined function f_1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.