Abstract
This paper extends the local fracture energy concept of Hu and Wittmann [29,30], and proposes a bilinear model for boundary or size effect on the fracture properties of cementitious materials. The bilinear function used to approximate the non-constant local fracture energy distribution along a ligament is based on the assumption of the proportionality of the local fracture energy to the fracture process zone (FPZ) height and characterises the FPZ height reduction when approaching a specimen back boundary. The bilinear function consists of a horizontal straight line of the intrinsic fracture energy G F and a declining straight line that reduces to zero at the back boundary. It is demonstrated that using the bilinear model, the size-independent fracture energy G F can be estimated from the fracture energy data measured on laboratory-size specimens, and the intersection of these two linear functions, defined as the transition ligament, represents the influence of the back boundary on the fracture properties. It is also demonstrated that the specimen size alone is not sufficient to characterise the size effect in the fracture properties observed on laboratory-size specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.