Abstract

Development of boundary aligned grid generation is presented together with comparative performance of cell-vertex versus cell-centred CVD-MPFA finite-volume formulations using equivalent degrees of freedom. When generating structured or unstructured grids for reservoir simulation, classical key constraints involve boundary aligned grid generation with control-volume boundaries aligned with solid walls and geological features such as layers, shale barriers, fractures, faults, pinchouts and multilateral wells. The schemes used are control-volume distributed (CVD) with flow variables and rock properties sharing the same control-volume location and are comprised of a multipoint flux family formulation (CVD-MPFA). Consequently a natural choice is for primal grid cells to act as control-volumes, then grid generation can be performed with primal grid cell boundaries being aligned with key interior constraint boundaries. This naturally leads to cell-centred approximation, where flow variables and rock properties are associated with grid cell centres. The alternative is to employ cell-vertex approximation which uses far fewer approximation points on a given unstructured grid. In this case control-volumes are constructed around primal grid vertices. The grid generation process is less straight forward since control-volumes must be constrained to satisfy interior boundary alignment. A novel grid generation procedure is proposed that automates control-volume boundary alignment and yields a Voronoi mesh. The actual grid is then generated such that dual boundaries are aligned with key internal constraint boundaries and cell-vertex approximation becomes the natural choice. In this case flow variables and rock properties are associated with grid cell vertices and their dual control-volumes. The relative benefits of both types of approximation is made clear in terms of flow resolution and degrees of freedom required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.